Asymmetric Distributions from Constrained Mixtures

نویسندگان

  • Conrado Silva Miranda
  • Fernando José Von Zuben
چکیده

This paper introduces constrained mixtures for continuous distributions, characterized by a mixture of distributions where each distribution has a shape similar to the base distribution and disjoint domains. This new concept is used to create generalized asymmetric versions of the Laplace and normal distributions, which are shown to define exponential families, with known conjugate priors, and to have maximum likelihood estimates for the original parameters, with known closed-form expressions. The asymmetric and symmetric normal distributions are compared in a linear regression example, showing that the asymmetric version performs at least as well as the symmetric one, and in a real world time-series problem, where a hidden Markov model is used to fit a stock index, indicating that the asymmetric version provides higher likelihood and may learn distribution models over states and transition distributions with considerably less entropy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetric Univariate and Bivariate Laplace and Generalized Laplace Distributions

Alternative specifications of univariate asymmetric Laplace models are described and investigated. A more general mixture model is then introduced. Bivariate extensions of these models are discussed in some detail, with particular emphasis on associated parameter estimation strategies. Multivariate versions of the models are briefly introduced.

متن کامل

A note on constrained EM algorithms for mixtures of elliptical distributions

The existence of a global maximizer of the likelihood on constrained parameter spaces has been proved here, extending a previous result due to Hathaway (1986) to the multivariate setting and to the general case of mixtures of elliptical distributions. Then, focusing on a particular data set which motivates our methodology, a new definition of weak homoscedasticity is introduced. Successively, a...

متن کامل

Minimax Estimation of the Scale Parameter in a Family of Transformed Chi-Square Distributions under Asymmetric Squared Log Error and MLINEX Loss Functions

This paper is concerned with the problem of finding the minimax estimators of the scale parameter ? in a family of transformed chi-square distributions, under asymmetric squared log error (SLE) and modified linear exponential (MLINEX) loss functions, using the Lehmann Theorem [2]. Also we show that the results of Podder et al. [4] for Pareto distribution are a special case of our results for th...

متن کامل

Modelling asset return using multivariate asymmetric mixture models with applications to estimation of Value-at-Risk

Value-at-Risk (VaR) is a widely used statistical measure in financial risk management for quantifying the level of risk associated with a specific investment portfolio. It is well-known that historical return data exhibit non-normal features, such as heavy tails and skewness. Current analytical (parameteric) calculation of VaR typically assumes the distribution of the portfolio return to be a n...

متن کامل

A Constrained EM Algorithm for Independent Component Analysis

We introduce a novel way of performing independent component analysis using a constrained version of the expectation-maximization (EM) algorithm. The source distributions are modeled as D one-dimensional mixtures of gaussians. The observed data are modeled as linear mixtures of the sources with additive, isotropic noise. This generative model is fit to the data using constrained EM. The simpler...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1503.06429  شماره 

صفحات  -

تاریخ انتشار 2015